Technical Document


Name :	Pierre-Antoine Ridderstap	Vadym Tkachenko	Yanina Petrova	Gabriel Rafael
Date :	12/06/2023


 


	[bookmark: _Toc81572611]Revision Table
	Description
	Date
	Author
	Checked by
	Approved by

	
	
	
	
	
	




Table of Contents
Introduction	3
Deployment	4
Prerequisite configuration	4
Cluster deployment	4
Upgrade	6



[bookmark: _Toc136942248]Introduction
This technical document describes in detail how deployment and upgrade of the Kubernetes cluster are done using Kubespray. In the deployment section, the Terraform configuration for creating EC2 instances is discussed, followed by the upgrade process.

[bookmark: _Toc136942249]Deployment
[bookmark: _Toc136942250]Prerequisite configuration
First, to set up the Kubernetes cluster you need to clone the Kubespray repository, followed by installation of Anible and its dependencies. To do this, run the following command from cloned repository’s root folder:
pip install -r requirements.txt
Then, install latest version of Terraform by HashiCorp. Terraform must be used to assist provide our infrastructure, because Kubespray does not automatically construct virtual machines. We begin by setting up an SSH key pair on AWS for Ansible.
Once the keypair is generated execute following commands:

cd [repository]/contrib/terraform/aws/
cp credentials.tfvars.example credentials.tfvars
nano credentials.tfvars

[bookmark: _Toc136942251]Cluster deployment
Modify the credentials.tfvars file, filling in the AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY and the private_key.pem name generated previously. Contents of your credentials.tfvars should look similar to Figure 1:
[image: ]
Figure 1: Modifying credentials.tfvars
Next step would be to edit the terraform.tfvars, where you should specify the structure of the cluster and number of instances for each Kubernetes component. In our case, the following configuration was specified:
///
#Global Vars
aws_cluster_name = "devtest"

#VPC Vars
aws_vpc_cidr_block       = "10.250.192.0/18"
aws_cidr_subnets_private = ["10.250.192.0/20", "10.250.208.0/20"]
aws_cidr_subnets_public  = ["10.250.224.0/20", "10.250.240.0/20"]

#Bastion Host
aws_bastion_num  = 1
aws_bastion_size = "t3.small"

#Kubernetes Cluster
aws_kube_master_num       = 3
aws_kube_master_size      = "t3.medium"
aws_kube_master_disk_size = 50

aws_etcd_num       = 3
aws_etcd_size      = "t3.medium"
aws_etcd_disk_size = 50

aws_kube_worker_num       = 4
aws_kube_worker_size      = "t3.medium"
aws_kube_worker_disk_size = 50

#Settings AWS ELB
aws_nlb_api_port    = 6443
k8s_secure_api_port = 6443

default_tags = {
  #  Env = "devtest"
  #  Product = "kubernetes"
}

inventory_file = "../../../inventory/hosts"

///

Follow this by creating the terraform plan and applying it to create instances in the AWS:

terraform init
terraform plan -out mysuperplan -var-file=credentials.tfvars

Once the plan has been applied, we can use Kubespray to deploy the cluster:

Next, load the SSH key, which were created in AWS earlier on. First, create a file (in our case, it will be located at ~/.ssh/user/kubespray.pem) and paste the private part of the key created at AWS there.

ssh-add ~/.ssh/user/kubespray.pem

To create the Kubernetes cluster, from repository’s root folder run: 
ansible-playbook -i ./inventory/hosts ./cluster.yml -e ansible_user=admin  -e kube_version=[version] -b --become-user=root

You might require a different value for ansible_user depending on the image used by AWS for creating instances. You can check for specific value from AWS EC2 management console.
· The playbook above performs a list of tasks, such as:
· Configure openssh-server on bastion
· Deploys the container engine
· Sets up etcd and configures certificates
· Configures networking and Kubernetes control plane
Once the playbook has finished running, Kubernetes cluster should be successfully deployed and can be accessed by connecting via ssh to one of the master instances.

[bookmark: _Toc136942252]Upgrade

[image: ]
Figure 2 Process Diagram
Following the deployment instructions should result in a Kubernetes cluster, which is up and running, as shown in the Figure 2. Once a new version of Kubernetes is out, you can upgrade your cluster to a new version using Ansible.
First, make sure to perform a “git checkout” for a newest version of Kubespray repository. Then you can upgrade the cluster to a new Kubernetes version by running a following command and specifying the kube_version:
ansible-playbook -i ./inventory/hosts ./upgrade-cluster.yml -e ansible_user=admin  -e kube_version=[version] -b --become-user=root
This performs a graceful upgrade of the cluster, when each component is laid down in a fixed order and upgraded to a new version. Ansible performs a following list of tasks contained in the upgrade-cluster.yml playbook:
· Prepares nodes for upgrade
· Handles upgrades to master nodes to maintain backward compatibility
· Upgrade calico and external cloud provider on all masters, calico-rrs, and nodes
· Finally handle worker upgrades
Page 2 of 2

image1.png




image2.png




image3.png
A
QP'O.ll tys T:::Rol\:l-:;on AND

COMMUNICATION
TECHNOLOGY




image4.png
user@user:~/repos/kubespray/contrib/terraforn/aws$ cat credentials.tfvars
#AWS Access Key

AWS_ACCESS_KEY_ID =

#AWS Secret Key

AWS_SECRET_ACCESS_KEY =

#EC2 SSH Key Name

AWS_SSH_KEY_NAME
#AWS Reglon
AWS_DEFAULT_REGION = "eu-north-1"
user@user:~/repos/kubespray/contrib/terraforn/aus$

"vadyn_kubespray"




image5.png
ANSIBLE

™ T

etcd master

Control plane.

inventory/hosts

termafou.tvars.
N

credentgls.tivars

Kube cluster

1,





