
   

 

  

Names : Pierre-Antoine Ridderstap 
Vadym Tkachenko 
Yanina Petrova 
Gabriel Rafael 

Date : 12/06/2023

   

KUBERNETES CLUSTER 
UPGRADES WITHOUT 

DISTRUPTION 
Research Document



Research Document

Revision 
Table

Description Date Author C h e c k e d 
by

Approved 
by

V0.1 First draft 21-03-2023 Students N a t h a n 
Keyaerts

V0.2 C h a n g e s m a d e 
a c c o r d i n g t o t h e 
feedback

06-06-2023 Students Haverkort, 
Frank

V0.3 Added main question 
conclusion

06-12-2023 Students

Page  of  1 22



Research Document

Table of Contents 

Introduction  ..............................................................................................................................3
Assignment  ..............................................................................................................................4

Requirements  .......................................................................................................................4
Research Questions  ................................................................................................................5

What is the best strategy to use when upgrading a Kubernetes cluster?  ............................5
Rolling Update  .................................................................................................................5
Blue-Green  ......................................................................................................................9
Canary  ...........................................................................................................................12

How to measure the availability of an application during an upgrade?  ..............................14
What tools can be used to upgrade a Kubernetes cluster?  ...............................................15

Kubeadm  .......................................................................................................................15
How to deal with potential data inconsistency issues/loss during an upgrade?  .................19

How to implement rollback in case the upgrade fails?  ...................................................20
How to make the solution cloud-agnostic?  .........................................................................21

Conclusion  .............................................................................................................................22
How to upgrade a Kubernetes cluster with no service disruption? ....................................22

Page  of  2 22



Research Document

Introduc)on 
Over the past few years, Kubernetes has established itself as the leading container 
orchestration platform, empowering organizations to efficiently manage and scale their 
containerized applications. As its popularity grows, it undergoes more rapid development, 
incorporating different user demands, better security practices and bug fixes with each new 
version. Upgrading a Kubernetes cluster has become increasingly important for maintaining 
organization operations and providing consistent services.  

Manual cluster upgrades can be complex, time-consuming, and error-prone, requiring 
meticulous planning, coordination, and human intervention. To address these challenges, 
there is a growing need to explore automated approaches for upgrading Kubernetes 
clusters. Automation provides numerous benefits, including reduced operational burden, 
faster deployment of new features, increased reliability, and minimized downtime. 

This research paper aims to investigate the concept of automating Kubernetes cluster 
upgrades, providing a comprehensive approach to streamline the process while ensuring the 
smooth functioning of the cluster. The primary objective is to explore the available strategies 
and techniques that allow clusters to be upgraded seamlessly, eliminating manual 
intervention, and reducing the risks associated with human error. 

To achieve these objectives, this research paper will analyze existing literature, examine use 
cases, and conduct experiments to evaluate the effectiveness and feasibility of automated 
Kubernetes cluster upgrades. 

Page  of  3 22



Research Document

Assignment 
As Kubernetes continues to evolve, new versions are released, introducing improved 
features, bug fixes, and enhanced security measures. To ensure the smooth functioning of a 
Kubernetes cluster, it is essential to research and understand the process of upgrading the 
cluster to newer versions.  

When upgrading a Kubernetes cluster to a newer version, it is important to have a clear 
understanding of the different components that make up a Kubernetes cluster. The cluster 
consists of a control plane, responsible for managing the overall cluster state and 
coordinating operations, which includes the Kubernetes API server, etcd (distributed key-
value store), kube-scheduler, and kube-controller-manager. The worker machines in the 
cluster, known as nodes, handle task execution and run containers. Each node runs kubelet, 
which communicates with the control plane and manages the containers' lifecycle. 
Understanding these different components and their interaction within the cluster is essential 
for successfully upgrading a Kubernetes cluster and ensuring its smooth functioning. 

This research aims to explore various strategies, tools, and best practices when it comes to 
upgrading a Kubernetes cluster version. To assist with our research, we have set the 
following research question. 

The following is our main question: 

How to upgrade a Kubernetes cluster with no service disruption? 

In addition to the main research question, there are also sub-questions:  

• What is the best strategy to use when upgrading a Kubernetes cluster? 

• How to measure the availability of the application during the upgrade? 

• What tools can be used to upgrade a Kubernetes cluster? 

• How to deal with potential data inconsistency issues/loss during an upgrade? 

• How to implement rollback in case the test fails? 

• How to make the solution cloud-agnostic? 

. 

Requirements 
For the requirements, we used the MoSCoW method to help us narrow down our 
requirements. The following are the requirements for the solution provided by the customer: 

• Must Haves 

o Services must be available during the upgrade. 

o A rollback must be in place in case of failure during the upgrade. 

o Kubernetes must be running at least a web server, API, and Database for the 
proof of concept. 

o Why an upgrade strategy was chosen must be defined. 

o Evaluate multiple upgrade strategies. 

• Should Haves 

o The use of the Blue/Green strategy 

Page  of  4 22



Research Document

o Testing on a non-production environment before applying on a production 
environment. 

• Could Haves 

o Can be provided a list of clusters to upgrade. 

Research Ques)ons 
What is the best strategy to use when upgrading a Kubernetes 
cluster? 

Currently, there is no specific strategy in place for updating the version of a Kubernetes 
cluster. However, there are deployment strategies available for effectively deploying newer 
versions of software applications. Although these deployment strategies are not specifically 
designed for updating the version of Kubernetes itself, they can still be leveraged to assist 
us in achieving our objective. The following are the deployment strategies that best suit our 
goals for this project. 

• Rolling Update 

• Blue Green 

• Canary  

Rolling Update 
What is Rolling Update Strategy? 
The Rolling update strategy (also known as Ramped strategy) is a deployment strategy used 
in software development and deployment to update a system in a controlled and gradual 
manner. The Rolling update strategy gradually updates an instance of an application or 
system, one at a time, while ensuring that the application remains available and operational 
throughout the update process. The Rolling update strategy is one of the two strategies 
available for managing the deployment of an application inside Kubernetes. Rolling Update 
is the default. 

Page  of  5 22



Research Document

 

FIGURE 1 ROLLING UPDATE STRATEGY 

As it can be seen in Figure 1, rolling update consists of creating a node with the newer 
version while draining the node with the older version. This process is repeated for each 
node in the cluster until all nodes are replaced ensuring that the application remains 
available throughout the cluster update. 

Page  of  6 22



Research Document

How is Rolling Update Strategy used? 
Inside Kubernetes, the Rolling Update Strategy is used to manage and update deployments. 
For this project we need to update the Kubernetes version and not the deployments, how 
can the Rolling update be used in this scenario then? 

Instead of updating deployments, the Rolling Update Strategy will be used to gradually 
update the Kubernetes control plane and worker nodes. To perform this, we must perform a 
workload migration. This is necessary to remove workload from the old nodes and move it to 
the updated ones. This process can be divided into four main points of interest: 

1. Draining the node: When it is time to update a node, the Rolling Update Strategy first 
drains the node by evicting the existing workloads. This ensures that the node is 
prepared for the update without any active workloads.  

2. Scheduling the workload on other nodes: While the node is being drained, the 
workloads running on that node are automatically scheduled onto other available 
nodes in the cluster. The Kubernetes scheduler intelligently selects appropriate 
nodes based on resource availability and other constraints defined in the pod 
configuration.  

3. Updating the drained node: After the workloads have been successfully migrated, the 
drained node can be updated with the required changes, such as upgrading the 
Kubernetes version or applying patches. This may involve restarting the node or 
performing necessary maintenance tasks.  

4. Resuming the workload on the updated node: Once the node update is complete, the 
Rolling Update Strategy allows the workloads to gradually return to the updated 
node. The Kubernetes scheduler ensures the workloads are distributed across the 
cluster, considering factors like resource availability and load balancing. 

By repeating these steps for each control plane and worker node in a rolling manner, the 
entire cluster can be updated without causing significant downtime or disruption to the 
running applications. 
*This is a general view 

What are the advantages? 
• Minimize/zero downtime. 

o The Rolling Update strategy updates one node at a time, ensuring that at 
least one node is always available. 

• Cost 

o The Rolling Update strategy requires extra resources, and extra resources 
equal extra cost. But compared to other strategies, the Rolling Update 
strategy is relatively low cost since it only duplicates nodes one at a time and 
not the cluster at once. 

• Scalable 

o The Rolling Update strategy can scale to a larger number of nodes.  

Page  of  7 22



Research Document

What are the disadvantages? 
• Rollback duration 

o Because the Rolling Update strategy updates nodes one at a time, it would 
need to do the same when rolling back. Meaning it will take longer to roll back 
compared to other strategies. 

• Update duration 

o Because the Rolling Update strategy updates nodes one at a time, it takes 
longer to complete compared to other strategies. 

• Complexity 

o The Rolling Update strategy requires a good understanding of the cluster 
being updated as updating nodes one at a time can be complex. 

What are the risks and how to minimize them? 
• Downtime 

o The rolling update strategy is designed to minimize downtime, but there will 
always be a risk of downtime during the update process. To help minimize this 
risk, it is advised to: 

▪ Carefully plan and schedule updates. 

▪ Test the updates in an environment other than production. 

• Version Compatibility 

o The rolling update strategy requires compatibility between the old and new 
versions. If there are compatibility issues between the versions, the update 
process can fail, causing downtime or other issues. To help minimize this risk, 
it is advised to: 

▪ Test the updates in environments other than production. 

It is however important to note that backwards compatibility cannot always be guaranteed. 
Kubernetes releases may introduce changes, deprecations, or removal of features, APIs, or 
behaviors that could impact existing deployments. Hence why it is of great importance to test 
the update in a different environment. Such compatibility issues can be avoided by carefully 
monitoring the process and performing a rollback when necessary. 

Page  of  8 22



Research Document

Blue-Green 
What is Blue-Green update strategy? 
Blue-green deployment is a deployment strategy that utilizes two identical environments, a 
“blue” (aka staging) and a “green” (aka production) environment with different versions of an 
application or service. Quality assurance and user acceptance testing are typically done 
within the blue environment that hosts new versions or changes. User traffic is shifted from 
the green environment to the blue environment once the latest changes have been tested 
and accepted within the blue environment.  

How can the Blue-Green Strategy be used? 
The Blue-Green deployment strategy is primarily used for deploying and managing 
application updates, rather than specifically upgrading the version of a Kubernetes cluster. 
However, it can indirectly facilitate the process of upgrading a Kubernetes cluster version.  

To utilize the Blue-Green strategy for upgrading the Kubernetes cluster version, the following 
steps can be taken: 

• Set up a new Kubernetes cluster: 

o Create a new cluster with the desired upgraded version of Kubernetes 
alongside the existing cluster. 

• Switch traffic to the upgraded cluster: 

o Gradually redirect the traffic from the existing cluster to the upgraded cluster. 

▪ This can be achieved by updating load balancer settings, DNS 
records, or service configurations. 

• Monitor and validate: 

o Validate that all applications and services are running smoothly. 
*This is a general view 

 

Page  of  9 22

FIGURE 2. BLUE GREEN DEPLOYMENT STRATEGY (ON AWS)



Research Document

What are the advantages? 
• Zero-downtime: 

o The new version of the cluster is deployed in a separate environment (green) 
alongside the existing version (blue). Traffic is then gradually switched from 
the blue environment to the green environment, ensuring availability. 

• Quick rollback: 

o If any unexpected issues or bugs are discovered in the green environment, 
rolling back to the blue environment is as simple as redirecting traffic back.  

• Testing in a production-like environment 

o Blue-Green strategy allows for testing of the updated version in a production-
like environment before fully transitioning traffic to it. This helps identify and 
address any compatibility, performance, or stability issues before they impact 
users. 

What are the disadvantages? 
• Cost: 

o Maintaining two separate environments (blue and green) simultaneously 
requires additional resources. This additional resource can increase costs 
and resource utilization, especially for larger deployments.  

• Update duration: 

o Gradually transitioning traffic from the blue to the green environment can take 
time, particularly for larger deployments or applications with extensive user 
traffic. The extended deployment time may lead to a longer overall update 
duration. 

• Scalability: 

o Blue-Green deployments may pose challenges in managing large-scale 
environments. When dealing with many nodes or highly distributed systems, 
duplicating the entire environment can be complex and resource intensive. 

What are the risks and how to minimize them? 
• Traffic routing issues:  

o Incorrect configuration or issues in traffic routing can lead to service 
disruptions or incorrect load balancing.  

▪ To help minimize this risk, it is advised to: 

• implement testing of traffic routing configurations, use traffic 
management services, and monitor traffic patterns during the 
transition to identify and resolve any routing issues promptly. 

• Data consistency and synchronization:  

o When transitioning between blue and green environments, ensuring data 
consistency and synchronization can be challenging.  

▪ To help minimize this risk, it is advised to: 

• implement data replication system, perform testing of data 
migration processes, and closely monitor data integrity during 
the transition. 

Page  of  10 22



Research Document

Page  of  11 22



Research Document

Canary 
What is Canary update strategy? 

A canary update is a strategy where a new version of an application is initially deployed to a 
small subset of users or servers, often referred to as the canary group. This group is 
selected to be representative of the broader user base or production environment. The new 
version is then tested on this subset of users/servers before it is rolled out to the entire user 
base or production environment. If any issues are detected during the canary phase, the 
rollout can be stopped, and the changes can be rolled back. 

There are 2 subtypes of Canary deployments: 

Side-by-side Canary – similar to the blue/green update strategy, but staged, requires a copy 
of existing infrastructure, therefore more costly. 

Rolling Canary – like rolling update strategies, but an update is rolled out for a small subset 
of users, called a “canary group”, which is then monitored for a specific period. If no issues 
are observed, the update is rolled out for the rest of the users. 

 

FIGURE 3. CANARY UPGRADE STRATEGY 

In Figure 3 we can see a percentage of the users being routed to an updated version of the 
cluster. Through thorough monitoring of the process and the canary group, it can be 
determined whether the cluster upgrade should continue, or a rollback should be performed. 

What are the advantages? 

• Reduced risk: 

o Canary deployment allows for a controlled release of new features or changes to 
a small group of users or systems, which reduces the risk of any unforeseen 
issues impacting the entire system. 

• Early feedback: 

o Canary deployment allows for early feedback from a small group of users or 
systems, which can help identify any issues or bugs early on in the deployment 
process. 

• No downtime: 
o Like blue-green deployments, a canary deployment does not generate downtime.  

Page  of  12 22



Research Document

• Easy rollback:  

o If something goes wrong, we can easily roll back to the previous version. 

What are the disadvantages? 

• Frustration: 
o The first group using the canary will find the worst bugs. What is more, some 

users may be put off learning they were used as guinea pigs. 
• Costs: 

o Side-by-side deployments' cost is higher because we need extra infrastructure. 
• Complexity: 

o Canary deployments share the same complexities as blue-green deployments. 
Having many production machines, migrating users, and monitoring the new 
system; are complicated tasks. 

• Time:  
o Setting up a healthy canary deployment pipeline takes time and effort. On the 

plus side, once we get it right, we can do more frequent and safer deployments. 
• Databases:  

o The problem is the database must simultaneously work with the canary and the 
control versions during the deployment. So, if we have breaking schema 
changes, we are in trouble. We need to maintain backward compatibility as we 
make changes, which adds another layer of complexity. 

How to pick users for the “canary group”? 

• Randomly:  
o We can send a percentage of users to the canary by random chance. 

• By region:  
o Deploy the canary one geographical area at a time. For example, we could 

choose a follow-the-night strategy and release during each region’s nighttime, 
when there are the least users online. 

• Early adopter program:  
o Giving users a chance to opt-in (or opt-out) to the canary program might lead to 

the best results. Early adopters are more likely to offer quality feedback. 
• Dogfooding:  

o This term relates to the saying “eating your dog food” and involves releasing the 
canary to internal users and employees first. 

Page  of  13 22



Research Document

How to measure the availability of an applica)on during an 
upgrade? 

There are many things to take into consideration when measuring the availability of an 
application during an upgrade. First, we need to define what counts as availability. 

There are many ways to define an application available, but for this project, we ask the 
stakeholders a few questions to better define availability in this project. The conclusion we 
came to is that availability is having the pod (where an application will be running) 
running with the status healthy. 

Now that we have availability defined, we can define our key performance indicators (KPIs) 
that will be used to measure availability. The following are KPIs that can be used and their 
description: 

• Pod status: 

o Pod status indicates the status of the pod, such as whether it is running, 
pending, or has failed. A healthy pod should have a running status. 

• Health checks: 

o Health checks indicate the status of the liveness and readiness probes 
configured for the pod. A failed liveness or readiness probe can cause the 
pod to be restarted or taken out of service. 

• Restart count: 

o Restart count indicates the number of times a pod has been restarted. A high 
restart count can indicate that the pod is experiencing issues or failures. 

• Network connectivity: 

o Network connectivity indicates whether the pod can communicate with other 
pods or services in the cluster. 

If by the end of the upgrade all KPI (key performance indicators) indicate that the pod is 
heathy, we can conclude the upgrade a success.  

Page  of  14 22



Research Document

What tools can be used to upgrade a Kubernetes cluster? 
There are many different tools out there that can be used to help automate the Kubernetes 
cluster version upgrade. We narrow down the result to the following three tools: 

• Kubeadm 

• Kops 

• Kubespray 

Kubeadm 
What is Kubeadm (Key Feature)? 
Kubeadm is a tool provided by the Kubernetes project to bootstrap and manage Kubernetes 
clusters. Kubeadm can be automated to help with many manual tasks involved in cluster 
initialization, such as configuring the control plane components, securing the cluster, and 
joining worker nodes. 

How does Kubeadm handle upgrade? 
Kubeadm provides a straightforward process for upgrading the Kubernetes cluster. It follows 
a rolling upgrade strategy, which means that control plane components and worker nodes 
are upgraded one by one while the cluster remains available. Kubeadm handles other the 
necessary steps, including upgrading the control plane components, updating kubelet on 
worker nodes,etc. 

What are the advantages and disadvantages? 
Advantages of Kubeadm: 

• Official tool 

o Kubeadm is an official tool from the Kubernetes project, ensuring reliability 
and alignment with the Kubernetes ecosystem. 

• Good documentation 

o The tool provides clear documentation and a well-defined workflow, making it 
accessible for both beginners and experienced users. 

Disadvantages of Kubeadm: 

• Limited focus 

o Kubeadm is focused on cluster initialization and upgrades, and it may not 
cover more advanced cluster management features that other tools offer. 

• Complex scripts needed 

o It requires additional manual steps or scripts to handle complex 
configurations or customizations beyond the basic functionalities provided by 
Kubeadm. 

Page  of  15 22



Research Document

Kops 

What is Kops (Key Feature)? 
Kops (Kubernetes Operations) is a powerful command-line tool that automates the creation, 
upgrade, and management of Kubernetes clusters on AWS and GCP. Its key feature lies in 
its ability to automate the provisioning and management processes of Kubernetes clusters 
specifically tailored for the AWS environment. By using Kops, you can define your desired 
cluster state through configuration files, and the tool handles the creation of the necessary 
cloud resources, as well as the setup of the Kubernetes control plane and worker nodes. 

How does Kops handle upgrades? 
When it comes to upgrading a Kubernetes cluster using Kops, the tool supports rolling 
upgrades. This means that Kops can update each node in the cluster one by one, without 
causing any downtime. Rolling upgrades allow you to transition your cluster to a new 
Kubernetes version while ensuring that your applications remain available. Kops manages 
the process by carefully orchestrating the upgrade steps for control plane components and 
worker nodes, ensuring no impact on your running workloads. 

What are the advantages and disadvantages? 
Advantages of Kops: 

• Automation:  

o Kops automates the creation and management of Kubernetes 
clusters, reducing the manual effort and potential for human error. 

• Upgrade Management:  

o Kops simplifies the process of upgrading your Kubernetes cluster, 
ensuring minimal disruption and downtime. 

Disadvantages of Kops: 

• Complexity: 

o Setting up and managing Kubernetes clusters can be complex, and 
Kops is no exception. It requires a good understanding of Kubernetes 
concepts. 

• Limited Cloud Provider Support: 

o While Kops is designed for AWS, it may not have the same level of 
support for other cloud providers. Current supported cloud providers 
are AWS and GCP, other providers are in beta or alpha (not stable). 

Page  of  16 22



Research Document

Kubspray 

What is Kubespray (Key Feature)? 
Kubespray is an open-source project that provides a flexible and customizable deployment 
solution for Kubernetes clusters. Its use of Ansible playbooks, which allow you to define and 
configure your desired cluster state, separates it from the others. Kubespray supports 
deploying Kubernetes clusters across various cloud providers, including AWS, Azure, 
Google Cloud, as well as on bare metal servers. This flexibility makes it a versatile tool for 
managing Kubernetes deployments in different environments. 

How does Kubespray handle upgrades? 
Kubespray supports a rolling update strategy. This means that Kubespray orchestrates the 
upgrade process by updating each component of the cluster incrementally, one node at a 
time. By following this approach, Kubespray ensures that the cluster remains available 
during the upgrade, minimizing the impact on running workloads. The rolling update 
mechanism allows for a smooth transition to the new Kubernetes version while maintaining 
the availability of your applications. 

What are the advantages and disadvantages? 
    Advantages of Kubespray: 

• Customizability:  

o Kubespray provides a high level of customization, allowing you to change 
your Kubernetes cluster configuration to meet your specific requirements.  

• Flexibility:  

o Kubespray is cloud-agnostic and can be used to deploy Kubernetes clusters 
across various cloud providers and operating systems. 

• Extensibility:  

o Kubespray is built on Ansible, a powerful automation tool. This makes it easy 
to extend and modify the deployment process by leveraging Ansible's vast 
ecosystem of modules and playbooks. 

Disadvantages of Kubespray: 

• Complexity:  

o Kubespray flexibility and customizability come at the cost of complexity. It 
requires a good understanding of Ansible and Kubernetes concepts to 
effectively use and modify the playbooks. 

• Limited support and documentation:  

o As an open-source project, Kubespray requires maintenance and periodic 
updates to align with the latest versions of Kubernetes and Ansible. This 
means you need to stay informed about updates and security patches to 
ensure the stability and security of your cluster.  

o ∂The project has an active community and user base which can be helpful in 
some cases, but it lacks the extensive support that other commercial tools 
might offer. The documentation is also not easy to navigate hence requiring a 
good amount of time put into understanding the tool. This can make it 
challenging to find timely and accurate solutions for specific issues or 
scenarios. 

Page  of  17 22



Research Document

Page  of  18 22



Research Document

How to deal with poten)al data inconsistency issues/loss during an 
upgrade? 

Upgrading a Kubernetes cluster can be a complex process, and data consistency issues or 
data loss can be a potential risk during this process. The following are two steps that can be 
taken to deal with potential data inconsistency issues/loss during a Kubernetes cluster 
upgrade: 

• Backups 

Before upgrading the Kubernetes cluster, it is important to create a backup of all  
important data. This will ensure that in case of any data inconsistency issues or data  l o s s 
during the upgrade, the data can easily be recovered.  

• Understand upgrade procedures 

Learn the procedures recommended by the Kubernetes tool you are using. The 
documentation or guidelines provided by the tool will often include instructions on 
how to safely perform the upgrade process without causing data inconsistencies. 

• Dry run 

Before performing the actual upgrade, it is best to perform a dry run to simulate the 
upgrade process and identify any potential issues or errors which can then be 
corrected. 

Page  of  19 22



Research Document

How to implement rollback in case the upgrade fails? 
Rollback strategies are important when performing Kubernetes cluster upgrades. Depending 
on the upgrade strategy chosen for the solution, there are rollback procedures that can be 
implemented for each of them. The following are rollback procedures that can be 
implemented when using the rolling update or the blue-green strategy. 

The rolling update strategy involves gradually replacing the existing nodes with the updated 
versions. In case of a failed upgrade, the rolling update strategy offers rollback capabilities. 
Here is how it can work: 

1. Version Monitoring:  

o During the upgrade process, monitoring tools can be used to track the status 
and health of each node being updated. If any failure or abnormal behavior is 
detected, the upgrade process can be stopped. 

2. Pause and Rollback:  

o In the event of a failure, the rolling update strategy allows administrators to 
pause the upgrade and rollback to the previous version. This can be achieved 
by reverting the changes made to the updated node and resuming the 
deployment with the previous version. 

The blue-green deployment strategy involves two identical environments, referred to as the 
"blue" and "green" environments. The blue environment represents the production 
environment, while the green environment is prepared for the upgrade. Here is how the blue-
green strategy can manage a rollback in case of failure: 

1. Canary Testing:  

o Before performing the actual upgrade, the green environment serves as a 
testing ground to make sure the new version's compatibility and functionality. 
By routing a small portion of traffic to the green environment, administrators 
can monitor and evaluate the performance and stability of the new version. 

2. Switching Traffic:  

o During the upgrade, if issues or failures are detected in the green 
environment, administrators can simply route the traffic back to the blue 
environment, which is already running the stable and previous version. This 
redirection of traffic effectively rolls back the deployment without impacting 
end-users or causing significant downtime. 

Page  of  20 22



Research Document

How to make the solu)on cloud-agnos)c? 
What is cloud-agnostic? 
Cloud-agnostic is the ability of a solution to be independent of any specific cloud provider. A 
cloud-agnostic approach allows the Kubernetes cluster to be deployed and managed 
consistently across multiple cloud environments, such as AWS, Azure, Google Cloud, or on-
premises infrastructure. It ensures that the solution can be migrated or run on different cloud 
platforms without significant modifications.  

What are the challenges and limitations of achieving cloud-agnosticism?  

Trying to achieve cloud-agnostic for the solution, there are a lot of challenges to take to 
consideration: 

• Provider-specific features and services:  

o Each cloud provider offers unique features, services, and APIs. Achieving 
cloud-agnosticism may require avoiding or finding alternatives to provider-
specific functionalities, which could limit the utilization of certain cloud 
capabilities. 

• Configuration management complexity:  

o Managing configurations and dependencies for multiple cloud providers can 
introduce complexity. It may involve creating layers, using templating tools, or 
using cloud-agnostic configuration management tools to handle variations in 
configurations between providers. 

• Tooling and platform compatibility:  

o Some tools, frameworks, or platforms may be only integrated with specific 
cloud providers, limiting their usability in a cloud-agnostic context. Finding or 
developing tools that are compatible and functional across multiple cloud 
environments can be time-consuming and resource intensive. 

Page  of  21 22



Research Document

Conclusion 
How to upgrade a Kubernetes cluster with no service disrup)on?   

Based on all previous research questions we have come to the conclusion that Kubespray 
would be the ideal tool for the Kubernetes upgrade. This decision was made based on the 
requirements set by the stakeholders and our extensive research. Kubespray offers a range 
of features that make it the perfect choice for Kubernetes upgrade. One of its key 
advantages is its versatility in supporting various cloud providers and on-premises 
environments. With support for GCP, AWS, Azure, and on-premises deployments, 
Kubespray ensures seamless integration with different infrastructure setups, allowing for the 
cloud agnostic nature of this project. 

In addition to its cloud flexibility, Kubespray provides a comprehensive set of tools and 
functionalities specifically designed for cluster management and upgrade processes. Since 
Kubespray is essentially a collection of Ansible playbooks and Terraform scripts, it also 
leaves room for potential customization. This of course comes with increased complexity. 

Kubespray employes the rolling upgrade strategy which is ideal for keeping the application 
available while also minimizing costs. 

Page  of  22 22


